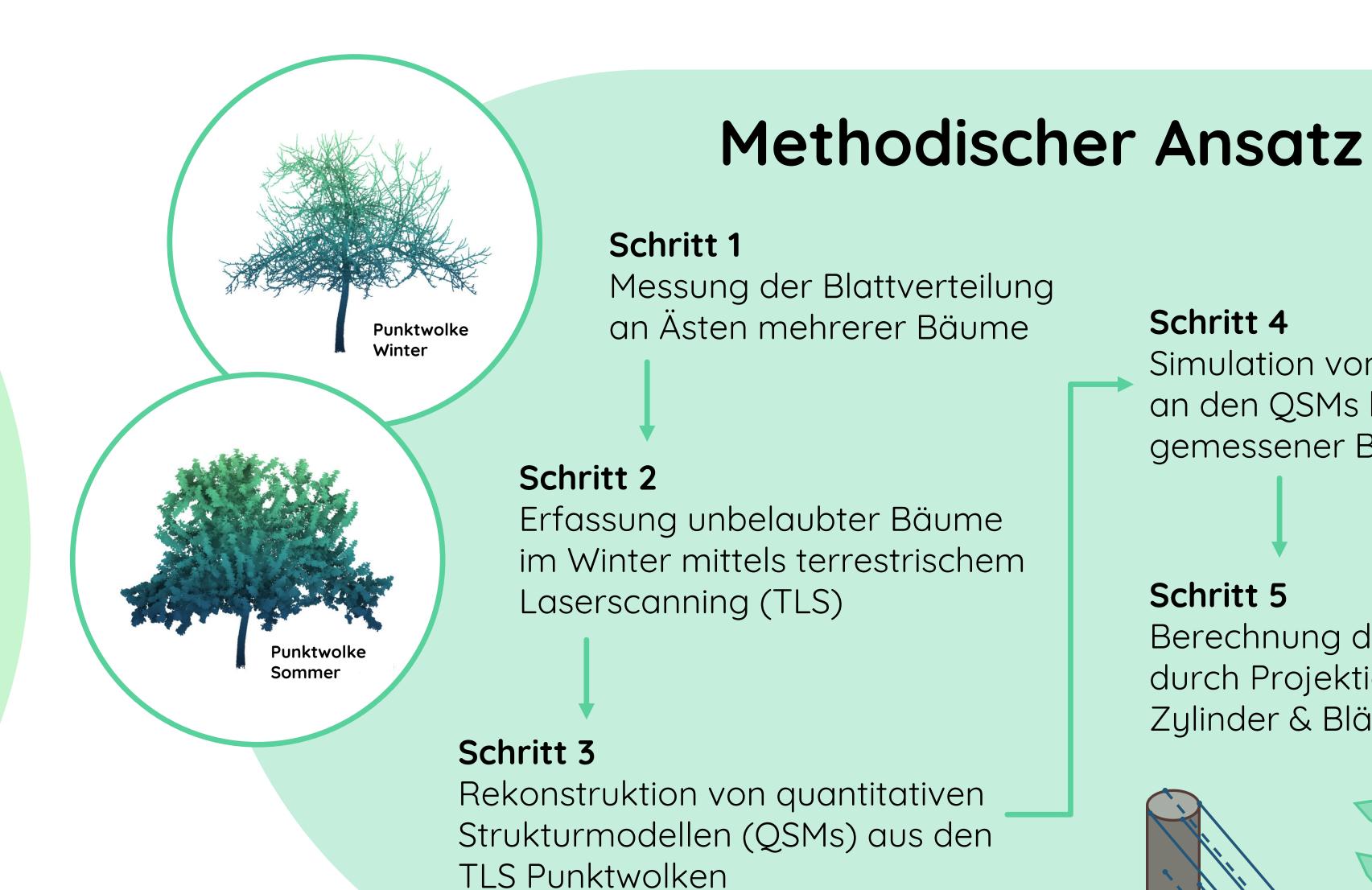
Bis(s) zum Abendrot: Räumlich und zeitlich hochaufgelöste Schattensimulation unter Bäumen mittels terrestrischem Laserscanning

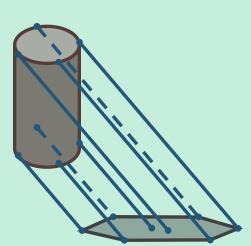


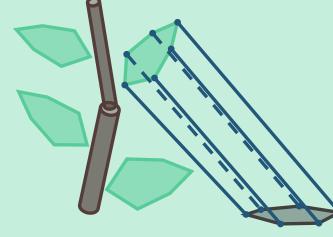
Zoe Schindler^{1*}, Elena Larysch¹, Julian Frey¹, Thomas Seifert¹, Christopher Morhart¹

- ¹ Albert-Ludwigs-Universität Freiburg, Professur für Waldwachstum und Dendroökologie, Freiburg im Breisgau, Deutschland
- * Kontakt: zoe.schindler@wwd.uni-freiburg.de

Einleitung

- Lichtmenge, -verteilung & -qualität beeinflussen Ökosysteme, z.B. bezüglich
 - Pflanzenwachstum ¹⁻⁴
 - Mikroklimatische Bedingungen ⁵
 - Artenvielfalt & -zusammensetzung 6-8
- In **Agroforstsystemen** (AFS) kann die Beschattung durch Bäume resultieren in
 - Verringertem Ertrag ^{9,10}
 - Unverändertem / erhöhtem Ertrag ^{11,12}
- Detaillierte Erfassung der Beschattung könnte z.B. zur **Ertragsmodellierung** genutzt werden
- Flächige Lichtmessungen über das gesamte Jahr hinweg sind extrem mühsam
- Ziel: Hochaufgelöste Schattensimulation über das gesamte Jahr basierend auf einer einzelnen Messkampagne




Schritt 4

Simulation von Einzelblättern an den QSMs basierend auf gemessener Blattverteilung

Schritt 5

Berechnung der Beschattung durch Projektion der QSM Zylinder & Blätter

Grundidee: Vergleich gemessene Validierung Strahlung mit simuliertem Licht & Schatten unter einem freistehenden Baum

Anteil an

Referenz

(pro Klasse)

75%

50%

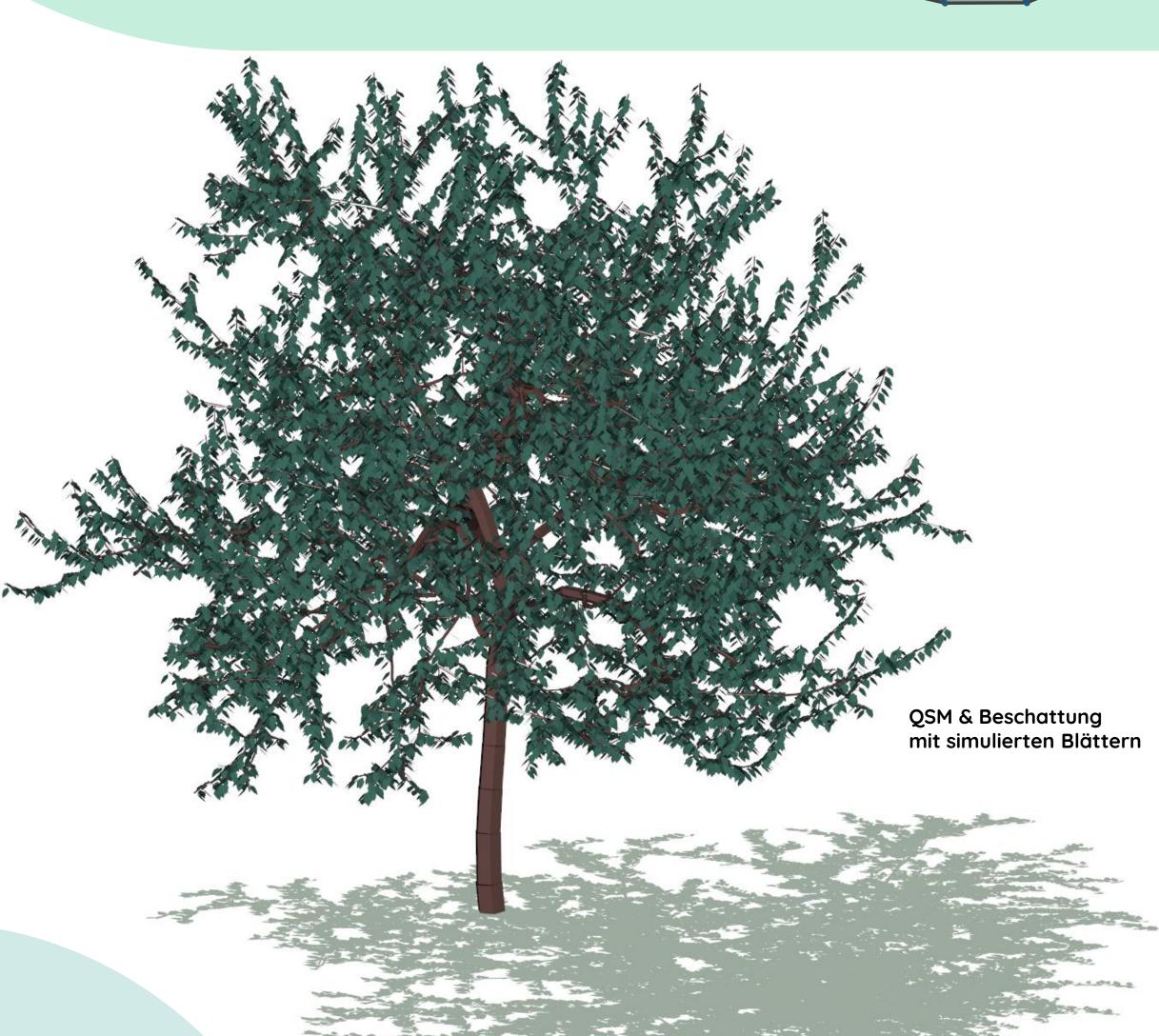
25%

367 1.250 13.050 (n = 14.667)8,62% 43,03% 98,33% Halbschatten (n = 0)0,00% 0,00% 0,00% Schatten 3.892 1.655 222 (n = 5.769)1,67% 91,38% 56,97% Halbschatten Licht

Schatten

(n = 4.259)

Referenz (n = 20.436)

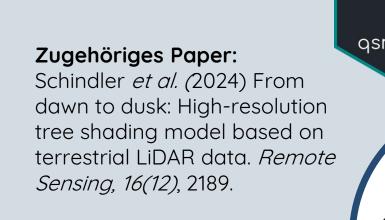

(n = 2.905)

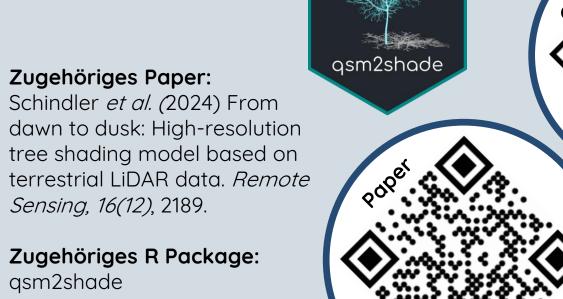
(n = 13.272)

Messungen: 60 Lichtsensoren unter einem Apfelbaum an einem unbewölkten Sommertag, Messungen 1x pro Minute (n = 20.436)

> Simulation: räumliche & zeitliche Auflösung von 1 cm bzw. 1 min

> > Ergebnis: Messungen und Simulation hoch korreliert (r = 0.84)




Diskussion

- Erweiterte **Funktionalität** & verbesserte Recheneffizienz im Vergleich zu früheren Algorithmen 13,14
- Einmalige TLS Datenaufnahme reduziert zeitlichen & finanziellen Aufwand
- Mögliche Anwendungen:
 - **Ertragsmodellierung** in AFS
 - Optimierung der Baumanordnung in AFS

Referenzen

1 Blackman & Black (1959) Physiological and ecological studies in the analysis of plant environment. Ann. Bot. 23, 131–145. | **2** Lupi et al. (2010) Xylem phenology and wood production: Resolving the chicken-or-egg dilemma. Plant Cell Environ. 33, 1721–1730. | 3 Leuchner et al. (2012) Solar radiation as a driver for growth and competition in forest stands. In: Growth and Defence in Plants | 4 Ptushenko et al. (2020) Spectrum of light as a determinant of plant functioning: A historical perspective. Life 10, 25. | 5 Fu & Rich (2002) A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 37, 25–35. | 6 Friedel et al. (2006) Species diversity and species composition of epiphytic bryophytes and lichens-A comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert. 117, 172-185. | 7 Sagar et al. (2008) Differential effect of woody plant canopies on species composition and diversity of ground vegetation: A case study. Trop. Ecol. 49, 189. | 8 Helbach, et al. (2022) Light heterogeneity affects understory plant species richness in temperate forests supporting the heterogeneity-diversity hypothesis. Ecol. Evol. 12, e8534. 9 Dufour et al. (2013) Assessing light competition for cereal production in temperate agroforestry systems using experimentation and crop modelling. J. Agron. Crop. Sci. 199, 217–227 | 10 Ehret et al. (2015) The effect of shade and shade material on white clover/perennial ryegrass mixtures for temperate agroforestry systems. Agrofor. Syst. 2015, 89, 557–570. | 11 Lin et al. (1998) Shade effects on forage crops with potential in temperate agroforestry practices. Agrofor. Syst. 44, 109–119. | 12 Somporn et al. (2012). Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. J. Sci. Food Agric. 92, 1956–1963. | 13 Rosskopf et al. (2017) Modelling shadow using 3D tree models in high spatial and temporal resolution. Remote Sens. 9, 719. | 14 Bohn Reckziegel et al. (2021) Modelling and comparing shading effects of 3D tree structures with virtual leaves. Remote Sens. 13, 532.

Förderung

Gefördert durch das Bundesministerium für Landwirtschaft, Ernährung und Heimat aufgrund eines Beschlusses des Deutschen Bundestages im Rahmen des Bundesprogramm Humus. Projekt Humax, Förderkennzeichen 2822HUM010.

Gefördert durch:

Projektträger

für Landwirtschaft, Ernährung

aufgrund eines Beschlusses des Deutschen Bundestages